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ABSTRACT

Functional inference recommends data analysis of a sample of n obser-

vations by functional and graphical representations of its probability models

using various functions on 0 < u < 1, including the quantile function. This

paper discusses: change PP plots and a continuous version of the sample

quantile function which use the mid-distinct values probability integral trans-

form; comparison density functions; comparison interpretation of probability

integral transform; maximum spacings method of one sample parameter es-

timation.

1. My 15th Anniversary of Texas A&M and Functional Statistical

Inference

As the Department of Statistics at Texas A&M University celebrates its

30th anniversary in 1992, each of us who are part of the department may

want to celebrate our personal anniversaries marking the length and depth

of our association. In 1992 I am completing 15 years of happy and deep

association (since 1978) with Texas A&M. I would like to thank my colleagues

for providing an enjoyable and stimulating environment, and proving that

there is great life in College Station (as well as opportunities to travel to help

maintain our department's national and international visibility). We can all
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take pride in 1992 in the fact that the Department of Statistics at Texas

A&M has a reputation as one of the outstanding and very active statistics

programs.

In 1978 my research emphasis expanded from time series analysis to

functional statistical inference. I feel that time series analysis is impor-

tant not only to provide analysis of time series data, but also to provide

a background suitable for new approaches to mainstream statistical prob-

lems. What I call functional inference recommends data analysis of a sample

of n observations by functional (and therefore graphical) representations of

its statistical properties (probability models), using various functions on the

unit interval 0 < u < 1. An important function is the quantile function Q(u),

0 < u < 1, or inverse distribution function. Functional inference (introduced

in Parzen (1979)) can be regarded as applying time series theoretical and

function smoothing ideas to classical statistics.

What will be the benefits of functional statistical inference to applied

statisticians? I believe that they will include (1) unification of statistical

methods for discrete and continuous random variables, (2) change analysis,

(3) information theory approaches to statistical inference (see Parzen (1989),

(1991), (1991), (1992)).

Unification may have the most difficulty arousing interest from applied

statisticians; its philosophy is that statistical problems should be solved in

several ways (when I ask graduate students what are several ways to solve a

problem in a textbook they usually tell me there is only one way!). Change

analysis (on which my research interests have bloomed since December 1990)

is an extension of changepoint analysis which has as initial goal to determine

if a probability model fitted to a whole sample Y1,..., Y,, fits all subsam-

ples Y1,... , Ym for all m < n. Information theory is important to statistics

because it provides measures of divergence between two probability distribu-
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tions.

The research of Eubank, LaRiccia, and Hart (1992) can be considered

to be fundamental research on functional statistical inference. The practice

of statistics would be enhanced by applying their deep insights about the

relations between goodness of fit tests and nonparametric regression.

2. One Sample Probability Model Fitting

A basic problem of statistics is fitting probability models to a sample

Y,,..., Y. of a continuous random variable Y with true distribution function

Fy(y) = Prob[Y <_ y],

probability density function fy(y) = Fy,(y), quantile function

Qy(u) = F•](u).

The parametric approach to modeling a random sample assumes a parametric

probability model f8(y) indexed by a vector parameter 0 with k components

8i.

Classical statistics assumes suitable regularity conditions on the para-

metric family of probability densities in order to assure desirable properties

of parameter estimators formed by maximum likelihood estimators 0V These

are defined to maximize the log likelihood

L(9) = logfe(Yt),
t=1

and are usually computed as solutions of the estimating equations

n ton Yor
S$0,(yt;o) = O'j = 1,...,Ik, GRUI

where Sej(Y;O) is the partial derivative of logfe(Y) with respect to the catio •

component 19 of the k-dimensional vector parameter 0.
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Goodne.s of fit of the parametric model to the data is tested by forming

the transformed data

Wt = Fo-(Y,)

and testing whether the discrete distribution function, denoted FW)(w), 0 <

w < 1, of W1,..., W, is significantly different from the distribution function

of U, a Uniform[0,1] random variable. Functional inference converts this

question into a problem about the detection of signal in noise in data that

is a process on 0 < w < 1. Under the null hypothesis that the parametric

model fits, the limit distribution of n'S(FW()(w) - w) is a Brownian Bridge

B(w), 0 < w < 1, modified for the effect of parameter estimation (Shorack

and Wellner (1986)).

Goal One of this paper is to define continuous versions of sample dis-

tribution functions that help provide tests of goodness of fit which provide

non-parametric estimators of fy when a parametric model does not fit.

3. Comparison and information divergence of probability distribu-

tions

Goal Two of this paper is to raise statisticians' consciousness about

the concept of comparison density function d(u; F, G), 0 < u < 1, of two

distributions F and G (see Parzen (1992)).

For F and G continuous, we define the comparison distribution

D(u;F,G) = G(F-1 ),O < u < 1,

and comparison density

d(u F,G) = g(F-1 (u))/f(F-1 (u)),O < u <1.

The graph of D(u F, G) is called a PP-plot because it is a plot of (F(y),

G(y)) which compares the P values of an observation y under the two dis-

tributions.
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For F and G discrete with respective probability mass functions PF and

PG we first define the comparison density

d(u : F,G) = pG(F-1 (u))/pF(F-'(u)),O < u < 1.

The comparison distribution is then defined as the integral

D(u : F, G) - d(t; F, G)dt, 0 < u < 1.

An equivalent way to describe D(u; F, G) in the discrete case is D(u; F, G) =

G(F-1(u)) at F-exact u satisfying F(F-'(u)) = u and D(u; F, G) is defined

at other values of u by linear interpolation between its values at F-exact val-

ues of u. When a PP-plot D(u; F, G) is determined by linear interpolation

we call the values determining the plot the PP-plot values; thus the PP-plot

values are G(F-1 (u)) for all values of u that are F-exact.

Goal Three zf this paper is to recommend Change PP plots which plot

(F(y), G(y) - F(y)) or equivalently (u, D(u; F, G) - u).

Implicit in our definitions are assumptions that guarantee that D(O; F, G) =

0, D(1; F, G) = 1. Therefore d(u; F, G) is a density, a non-negative function

integrating to 1.

Goal Four of this paper is to remind statisticians that very useful mea-

sures of divergence of D(u) from u are Renyi information measures (Renyi

(1961)) of the divergence of d(u) from 1. They provide "entropy detectors"

to be used in addition to "non-linear detectors" and "linear detectors" which

use norms of D(u) - u.

For a density d(u), 0 < u < 1, Renyi information of index A, is defined

for A not equal to 0 or -1 by

IR.(d) = (2/A(1 + A)) log j d(u)l+\du

5



For A equal to 0 or -1, define

Me (d) = 2 (d(u)logd(u))du

IR_.(d) = -2j log d(u))du

Hellinger information corresponds to A = -. 5;

IR-. 5 (d) = -8 log d(u)-'du.

A very useful identity is

IRA(d(u; F, G)) = IR-c(l+A)(d(u; G, F))

4. Comparison interpretation of probability integral transform

An important application of comparison concepts is to interpret explicit

formulas for the true distribution and true quantile function of the probability

integral transform W = F.(Y) assuming Y is continuous and the parametric

model is continuous. One can show that

Qw(u) = FS(Qy(u)) = D(u; Fy, Fs),

Fw(w) = Fy(Qo(w)) = D(w; Fe, Fy)

Goal Five of this paper is to recommend that the divergence (compari-

son) between two distribution measures Fy and Fe be measured by the diver-

gence from Do(u) = u of the comparison distribution functions D(u; Fy, Fo)

or D(u; Fs, Fy).

To illustrate the different roles played by the two possible comparison

distribution functions we note that (1) for estimation of the parameter one

chooses 0^ as the value of 0 making the quantile function D(u; Fy, Fs) close

to u, while (2) for goodness of fit, one tests if the distribution function

D(u; Fe-, Fy) is close to u.
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5. Sample quantile functions

Goal Six of this paper is emphasize to applied statisticians our opinion

that the first step in data analysis should be to form the sample quantile

function Q(")(u), 0 < u < 1, which is the inverse of the sample distribution

function F(')(y), -oo < y < oo. To compute it one determines uj, vi for

= 1,... ,c, where (1) the distinct values in the sample are denoted vj,

j = 1,..., c, and (2) the cumulative relative frequencies are denoted

Uj = F(n)(vj) = fraction of sample < vp.

Note u, = 1; define u0 = 0. If all values in the sample are distinct, c=n and

the distinct values are the order statistics Y(1; n) < ... < Y(n; n).

The sample quantile function Q(n), the inverse of the sample distribution

function F(n), can be calculated by

Q(n)(u) = vj, uj_1 < U < uj,

or equivalently it is piecewise constant left continuous satisfying

Q(n)(uj) = vj, j = 1, ... IC.

The sample median and quartiles are defined to be the values at u = .5, .25,

.75 of Q(n)(u).

A nonparametric measure of location is the sample median. A nonpara-

metric measure of scale is the quartile deviation

QD(n) = 2IQR(n),

defined as twice the interquartile range

IQR(,) - Q(n)(.75) - Q(n)(.25).

An important characteristic of a distribution is its behavior at the tails or

ends of the distribution; we like to joke that "in statistics the ends do justify
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the means" (to adaptively efficiently estimate location parameters one must

estimate tail shape parameters). Our experience is that tail behavior can be

judged (in a quick and dirty "back of an envelope" way) from the values near

0 and 1 of the identification quantile function (Parzen (1983))

QI(n)(u) - (Q(n)(u) - Q(n)(.5))/QD(").

Intuitively, the identification quantile function is normalized to have at u =.5

value 0 and slope approximately 1.

Goal Seven of this paper is to remind statisticians that there is an ex-

tensive literature on the important question of whether one should use a

nonparametrically smoothed sample quantile function Q-(W)(u) rather than

the raw sample quantile function Q(W)(u) at the initial stage of analysis.

A comprehensive survey and exhaustive analysis of properties of smoothed

sample quantile functions is given in the outstanding Ph.D. thesis of Cheng

Cheng (1993). In this paper I discuss my proposal for a quick and dirty

smoothing provided by a continuous version of the sample quantile function.

6. Continuous versions of sample quantile and distribution func-

tions, and Change PP Plots

The sample distribution function F(n) of data is discrete. Goal Eight of

this paper is to propose that to estimate a continuous distribution function

we first form a continuous version Fc(n) as follows. Define mid-values v,

j1,...,c- 1, by

S= .5(v, + vi+1 ).

We do not propose a universal definition of vc and vc. Initially we define
C

V0, = Vll, VC =V.

Define Fc('n and QC(n) to be piecewise linear between its values (for
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j=O,...,c)Qc(n)(U) =

FC(n)(v;) = U,

Goal Nine of this paper is to note that our proposed continuous version

may be regarded as related to another important modification of a discrete

distribution (which we call the mid-distribution) that is being increasingly

recognized as the way to express P-levels of significance tests (see Routledge

(1992), Upton (1992)). The mid-distribution function of the sample is defined

by

Fmid(n)(y) = F(n)(y) -. Sp(n)(y)

where p(")(y) is the fraction of the sample equal to y. One expects that

approximately

Fc(n)(v,) - Fmid(n)(v,) = (ui + u".U-l)/2,

QC(n)((uj + us-l)/2) = vi

Goal Ten of this paper is to propose that the problem of goodness of

fit and parameter estimation of the parametric model Fe- be treated as one

of comparing with the Uniform[0,1] distribution Do(u) = u the continuous

comparison distribution functions defined in terms of the PP-plot values uj

and

w,(O) = Fo (Qc(n)(uj)) = Fo(vc)

which we call the "distinct mid-value probability transform" since for j =

,..c - 1

wi(e) = F,((vi + v,+ 1)/2).

Define the quantile-type PP-plot Dc(u; F(n), Fe) as piecewise linear connect-

ing

(0, 0), (u1, (6)),...,I (u_,, t W0_9 (0)), (1,1).
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Define the distribution-type PP plot Dc(u; Fe, F(W)) as piecewise linear con-

necting

(0 ,0), (W IM(O) , u -,. . (- 1 - ( 0CI ), uc -l, (1, 1).

In practice we recommend plotting Change PP plots of (ui, wi(O) - uj)

and comparison densities dc(u; F), Fs) and dc(u; Fs, F(")).

7. Maximum Spacings method of one sample parameter estimation

Regular maximum likelihood estimators 0" are parameter values mini-

mizing the negative of the average log likelihood

3

- L(O) = (1/n) E - log f,(Y(j; n))
t=1

C

= Z(u, - u 1._)(- logfe(Q(n)(U1 ))
j=1

A maximun spacings estimator, also denoted 0^, minimizes

C

-2 Z(uj - u_•) log(Fe(Q'(.)u)) - F6(Qc(n)(u,,I)))/(U, - u..-.))
j=1

Maximum spacings estimators have been discussed by Cheng and Iles

(1987), Ranneby (1984), Cheng and Amin (1983), Titterington (1985); they

could be called Maximum Grouped Likelihood estimators. Maximum spac-

ings estimator can be shown to provide credible estimators in non-regular

cases (where likelihood is unbounded and thus maximum likelihood does not

provide a satisfactory estimator) and to provide efficient estimators in regular

cases (they have the same properties as maximum likelihood estimators).

Goal Eleven of this paper is to note that (1) maximum spacings esti-

mators can be represented in terms of comparison density functions whose

neg-entropy is minimized to find parameter estimators:

2 j1(- log dc(u; F("), F.))du,
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and (2) adapting Beran (1977) one can obtain robust parameter estimators

by combining maximum spacings estimations with minimum information es-

timation criteria.

We propose for investigation minimum information estimators (more

precisely, minimum Renyi information of index A estimators), denoted 0A(A),

defined to minimize
IRX( d (u; F(n), F,) ).

Minimum information estimators satisfy the estimating equations

j(dc(u; n F8))l+AS*3 (Qc(n)(U), O)du = 0.

Regular maximum likelihood estimators correspond to A = -1. Mini-

mum information estimators of index A are of interest because they provide

robuwt estimators in the presence in the data of values not fitting the assumed

parametric probability model (see Beran (1977)). To test if they should be

computed in preference to regular maximum likelihood estimators one could

test if the latter satisfy the estimating equations of the former. Research on

these ideas is continuing.

8. Example of Change PP Analysis

The introductory statistics textbook by Friedman et al (1978) discusses

a data set consisting of 100 measurements made at the National Bureau of

Standards on the weight of NB 10. It is very interesting because it ap,,axrs

to follow a normal distribution with outliers. One can obtain this conclu-

sion by an exploratory analysis (described below) or by robust estimation of

parameters of a normal distribution using minimum information estimators.

Each measurement in the sample is the number of micrograms below ten

grams. The sample standard deviaton is approximately 6 micrograms (the

maximum likelihood estimator). But a normal distribution with parameters
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equal to the sample mean and standard deviation does not pass tests of

goodness of fit to the data. A trimmed sample (trimmed to omit the smallest

and largest values) has standard deviation of approximately 4 microgram (the

robust estimator) and is fit by a normal distribution.

To compare whole sample with a probability model, we first compute

sample quantile function Q(n) of data normalized by subtracting sample

mean and dividing by sample standard deviation. Figure 1 compares Q(n)

with 4-I, the standard normal quantile function; we intuitively perceive that

their slopes at u = .5 differ, indicating that the true scale parameter of the

data is not well estimated by the sample standard deviation. Figure 2 com-

pares to the standard normal the sample quantile function of the normalized

trimmed sample; we perceive a fit.

Next we compute (what we have denoted by wj) the mid distinct values

of the normalized samples transformed by the standard normal distribution.

We compare wj to the sample cumulative frequencies uj. A PP plot graphs

the linear interpolation of (uj, wj). A Change PP plot graphs the linear

interpolation of (uj, n-5 (wj - uj)). Under the null hypothesis of goodness

fit, the Change PP plot should be a sample path of a Brownian Bridge

process, modified by the effect of parameter estimation. The asymptotic

95% significance level (found by simulation) is .97.

The Change PP plot of the whole sample in Figure 3 indicates lack

of fit because of its maximum (which is 1.12) and its shape (which can be

interpreted by an experienced analyst as a canonical shape indicating that the

probability integral transformed data has a probability density whose graph

looks like a bowl, implying outliers in the original data). This conclusion

is reached with a minimum of computation; it would also be reached by a

computer intensive density estimation analysis of the PP plot.

The Change PP plot of the trimmed sample in Figure 4 indicates fit (of
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the trimmed sample by the normal with parameters equal to the maximum

likelihood estimators from the trimmed sample) because of its maximum

and its shape (which can be interpreted as a canonical shape whose deriva-

tive is a constant function, indicating the transformed data has a uniform

distribution).
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FIGURE 3
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